GOING GREEN
The world is moving from non-renewable to renewable resources and the transportation industry is accelerating efforts to introduce zero-emissions transportation. Fleets transitioning to electric vehicles need a simple and comprehensive process to accomplish their sustainability goals. This guide will help you get started by introducing the steps to implement DC fast charging (fixed or mobile) at a fleet depot or remote location.

CHARGING ECOSYSTEM
Electric vehicle charging infrastructure is part of the Tre BEV ecosystem. Nikola will guide you through this process and offer a comprehensive solution to support your transition to zero-emissions. Our charging ecosystem includes fixed DC fast charging infrastructure, Mobile Charging Trailers, eSKID Chargers, coordination with the power utility company, smart charging software, networking, permitting requirements and estimated project timelines.

CONSIDERATIONS
For EV Charging Deployment

INVESTMENT
- EV charging infrastructure cost will be dependent on the customer requirement

GROWTH
- Analyzing scaling needs

UTILITIES
- Coordination & collaboration with your Power Utility Company

RATES
- Electric Vehicle Rates Analysis

DEMAND
- Charge Demand Analysis

DEPLOYMENT TIMELINE
Average timing: 1 year depending on fleet size

PHASE 01
PLANNING
STEPS
1 - 5
- Electrical upgrades and construction

PHASE 02
DEVELOPMENT
- Integrating electric trucks

PHASE 03
DEPLOYMENT
- Analysis of service voltage and load schedule
- Cost analysis for development and infrastructure requirements
- Identify transformer locations

FIXED CHARGING LOCATION

01 | ELECTRIC TRUCK DEPLOYMENT
- Determine fleet scaling potential
- Check for any electrical updates required for fleet’s electrification
- Identify needed technical support with the help of the utility company
- Confirm charging requirements, needs and costs for deployment
- Identify energy requirements for various truck types

02 | FLEET ELECTRIFICATION
- Plan for phasing and deployment timeline
- Analysis on energy requirement (charging times, speed of charging and daily kWh usage)
- Identify truck duty cycles
- Integrate new vehicles into rotation

03 | DEPOT ANALYSIS
- Check for space availability
- Check for site infrastructure requirement
- Check for utility grid infrastructure needs
- Evaluate electrical upgrades and charging updates for additional trucks

- BUILDING TO SCALE
 - Evaluate renewable energy resources
 - Evaluate energy storage options

04 | CHARGING SPECIFICATIONS
- Charging schedule analysis
- Identify charger type
- BUILDING TO SCALE
 - Discuss with your utility, if power needs are exceptional

05 | DEPLOYMENT OF ELECTRIC SERVICE PLAN
- Analysis of service voltage and load schedule
- Cost analysis for development and infrastructure requirements
- Identify transformer locations

06 | START INSTALLATION

ADDITIONAL UTILITY SUPPORT & PROGRAMS
- Power Peak Analysis - Calculates peak power usage and estimated cost
- kWh Breakeven Analysis - Calculates estimated kWh breakeven point to diesel mpg
- Discuss infrastructure incentive programs
- EV rate structure analysis
MOBILE CHARGING TRAILER

MCT CAPACITY

Chargers: 1 - 2
Trucks Charged per Day: 2 - 4

CHARGER

Capacity: 175 kW
Manufacturer: Tritium
Connector Type: CCS Type 1
Cable Length: 17' (14' reach)

FEATURES

- Plug N' Play
- 1 or 2 cable options

Shore Power Option: 480VAC 3ph ±10%
Output: 950V DC | Up to 178kW

Genset Option: 350 kW genset

MOBILE CHARGING TRAILER

ACCELERATE YOUR TRANSITION TO ZERO-EMISSIONS VEHICLES

Nikola’s Mobile Charging Trailer (MCT) can help speed up your access to EV operations. While others are waiting for permits and recharging infrastructure to be built, our simple-to-implement MCT can have you on the road to zero-emissions, lightning fast. This will allow you to focus on how you want to operate and grow your EV fleet before you incur a significant capital expense. Knowing how you want to operate your EVs will help you to be smart about your permanent recharging infrastructure plan.

Our MCT is built on a 16' foot trailer platform and is versatile and flexible. The MCT offers a mobile charging capability to support your EV operations at Fleet depot locations or austere environments. The MCT is truly the right charging system, at the right location, at the right time to support your requirements.

RECHARGE ANYWHERE, ANYTIME WITH THE NIKOLA MOBILE CHARGING TRAILER

© 2023 NIKA CORPORATION. ALL RIGHTS RESERVED. BEV041 04.17.23
eSKID

QUICK INSTALLATION
The eSKID is preconfigured and does not need special permits or construction, reducing the time it takes to install EV charging infrastructure.

FLEXIBLE
Provides the ability to charge two trucks at once with 62.5 kW output or divert full power (125 kW) to one charger to fast-track single truck charging.

PORTABLE
Without the need of permanent concrete pads, the eSKID can move wherever you go and relocated as your business grows, moves, and evolves.

eSKID CAPACITY

<table>
<thead>
<tr>
<th>NUMBER OF CHARGERS</th>
<th>1 - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF TRUCKS CHARGED PER DAY</td>
<td>2 - 4</td>
</tr>
</tbody>
</table>

CHARGER

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>ChargePoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>up to 125 kW</td>
</tr>
<tr>
<td>CONNECTOR TYPE</td>
<td>CCS Type 1</td>
</tr>
<tr>
<td>CABLE LENGTH</td>
<td>14'7"</td>
</tr>
</tbody>
</table>

FEATURES

- Plug N’ Play
- 2 Cables (CCS, CHademo)
- Shore Power Option: Input: 480VAC 3ph±10% Output: 200-1,000V DC | Up to 125kW
- Genset Option: 200 kW genset

© 2023 NIKOLA CORPORATION. ALL RIGHTS RESERVED. APRIL 17, 2023